368 research outputs found

    Designing the molecular future

    Get PDF
    Approximately 25years ago the first computer applications were conceived for the purpose of automated ‘de novo' drug design, prominent pioneering tools being ALADDIN, CAVEAT, GENOA, and DYLOMMS. Many of these early concepts were enabled by innovative techniques for ligand-receptor interaction modeling like GRID, MCSS, DOCK, and CoMFA, which still provide the theoretical framework for several more recently developed molecular design algorithms. After a first wave of software tools and groundbreaking applications in the 1990s—expressly GROW, GrowMol, LEGEND, and LUDI representing some of the key players—we are currently witnessing a renewed strong interest in this field. Innovative ideas for both receptor and ligand-based drug design have recently been published. We here provide a personal perspective on the evolution of de novo design, highlighting some of the historic achievements as well as possible future developments of this exciting field of research, which combines multiple scientific disciplines and is, like few other areas in chemistry, subject to continuous enthusiastic discussion and compassionate disput

    From Theory to Bench Experiment by Computer-assisted Drug Design

    Get PDF
    Tight integration of computer-assisted molecular design with practical realization by medicinal chemistry will be essential for finding next-generation drugs that are optimized for multiple pharmaceutically relevant properties. ETH Zürich has established an interdisciplinary research group devoted to exploring the potential of this scientific approach by combining expertise from pharmaceutical chemistry and computer sciences. In this article, some of the group's activities and projects are presented. A current focus is on machine-learning applications aiming at hit and lead structure identification by virtual screening and de novo design. The central concept of 'adaptive fitness landscapes' is highlighted along with practical examples from drug discovery projects

    Domain organization of long autotransporter signal sequences

    Get PDF
    Bacterial autotransporters represent a diverse family of proteins that autonomously translocate across the inner membrane of Gram-negative bacteria via the Sec complex and across the outer bacterial membrane. They often possess exceptionally long N-terminal signal sequences. We analyzed 90 long signal sequences of bacterial autotransporters and members of the two-partner secretion pathway in silico and describe common domain organization found in 79 of these sequences. The domains are in agreement with previously published experimental data. Our algorithmic approach allows for the systematic identification of functionally different domains in long signal sequences. Keywords: bacterial autotransporter, sequence analysis, pattern, protein targeting, signal peptide, protein traffickin

    Molecular similarity for machine learning in drug development : poster presentation

    Get PDF
    Poster presentation In pharmaceutical research and drug development, machine learning methods play an important role in virtual screening and ADME/Tox prediction. For the application of such methods, a formal measure of similarity between molecules is essential. Such a measure, in turn, depends on the underlying molecular representation. Input samples have traditionally been modeled as vectors. Consequently, molecules are represented to machine learning algorithms in a vectorized form using molecular descriptors. While this approach is straightforward, it has its shortcomings. Amongst others, the interpretation of the learned model can be difficult, e.g. when using fingerprints or hashing. Structured representations of the input constitute an alternative to vector based representations, a trend in machine learning over the last years. For molecules, there is a rich choice of such representations. Popular examples include the molecular graph, molecular shape and the electrostatic field. We have developed a molecular similarity measure defined directly on the (annotated) molecular graph, a long-standing established topological model for molecules. It is based on the concepts of optimal atom assignments and iterative graph similarity. In the latter, two atoms are considered similar if their neighbors are similar. This recursive definition leads to a non-linear system of equations. We show how to iteratively solve these equations and give bounds on the computational complexity of the procedure. Advantages of our similarity measure include interpretability (atoms of two molecules are assigned to each other, each pair with a score expressing local similarity; this can be visualized to show similar regions of two molecules and the degree of their similarity) and the possibility to introduce knowledge about the target where available. We retrospectively tested our similarity measure using support vector machines for virtual screening on several pharmaceutical and toxicological datasets, with encouraging results. Prospective studies are under way

    PocketPicker: analysis of ligand binding-sites with shape descriptors

    Get PDF
    Background Identification and evaluation of surface binding-pockets and occluded cavities are initial steps in protein structure-based drug design. Characterizing the active site's shape as well as the distribution of surrounding residues plays an important role for a variety of applications such as automated ligand docking or in situ modeling. Comparing the shape similarity of binding site geometries of related proteins provides further insights into the mechanisms of ligand binding. Results We present PocketPicker, an automated grid-based technique for the prediction of protein binding pockets that specifies the shape of a potential binding-site with regard to its buriedness. The method was applied to a representative set of protein-ligand complexes and their corresponding apo-protein structures to evaluate the quality of binding-site predictions. The performance of the pocket detection routine was compared to results achieved with the existing methods CAST, LIGSITE, LIGSITEcs, PASS and SURFNET. Success rates PocketPicker were comparable to those of LIGSITEcs and outperformed the other tools. We introduce a descriptor that translates the arrangement of grid points delineating a detected binding-site into a correlation vector. We show that this shape descriptor is suited for comparative analyses of similar binding-site geometry by examining induced-fit phenomena in aldose reductase. This new method uses information derived from calculations of the buriedness of potential binding-sites. Conclusions The pocket prediction routine of PocketPicker is a useful tool for identification of potential protein binding-pockets. It produces a convenient representation of binding-site shapes including an intuitive description of their accessibility. The shape-descriptor for automated classification of binding-site geometries can be used as an additional tool complementing elaborate manual inspections

    PocketGraph : graph representation of binding site volumes

    Get PDF
    The representation of small molecules as molecular graphs is a common technique in various fields of cheminformatics. This approach employs abstract descriptions of topology and properties for rapid analyses and comparison. Receptor-based methods in contrast mostly depend on more complex representations impeding simplified analysis and limiting the possibilities of property assignment. In this study we demonstrate that ligand-based methods can be applied to receptor-derived binding site analysis. We introduce the new method PocketGraph that translates representations of binding site volumes into linear graphs and enables the application of graph-based methods to the world of protein pockets. The method uses the PocketPicker algorithm for characterization of binding site volumes and employs a Growing Neural Gas procedure to derive graph representations of pocket topologies. Self-organizing map (SOM) projections revealed a limited number of pocket topologies. We argue that there is only a small set of pocket shapes realized in the known ligand-receptor complexes

    Ideenschmiede mit Praxisbezug : fünf Jahre Beilstein-Stiftungsprofessur für Chemieinformatik

    Get PDF
    Eine Stiftungsprofessur ermöglicht die konzentrierte Forschung auf einem speziellen Fachgebiet und schafft den notwendigen Freiraum, Neues zu erproben. Insbesondere kann sie dazu dienen, Brücken zwischen Disziplinen zu errichten. Mit diesem Ziel wurde vor fünf Jahren die Beilstein-Stiftungsprofessur für Chemieinformatik an der Johann Wolfgang Goethe-Universität eingerichtet. Gefördert von dem in Frankfurt am Main ansässigen Beilstein-Institut zur Förderung der Chemischen Wissenschaften, wurde sie in enger Zusammenarbeit mit dem Institut für Organische Chemie und Chemische Biologie unter der Federführung von Prof. Dr. Michael Göbel konzipiert. Nachdem die Förderperiode von fünf Jahren im März 2007 ausgelaufen war, ist die Stiftungsprofessur nahtlos in den ordentlichen Universitätsbetrieb übernommen worden. Dies gibt Anlass, ein Fazit zu ziehen

    Unterwegs in chemischen Räumen : Chemieinformatik und Moleküldesign

    Get PDF
    Wie findet man einen neuen Wirkstoff? Die pharmazeutisch-chemische Forschung steht mit diesem Vorhaben vor einer scheinbar unlösbaren Aufgabe, denn der "chemische Raum" aller wirkstoffartigen Moleküle ist unvorstellbar groß. So wurde geschätzt, dass man prinzipiell aus 1060 bis 10100 verschiedenen Verbindungen die geeigneten Kandidaten auswählen kann. Zum Vergleich: Seit dem Urknall sollen "nur" etwa 10 hoch 18 Sekunden, etwa 14 Milliarden Jahre, vergangen sein. Dies bedeutet, dass der chemische Raum praktisch unendlich ist. Aus dieser Überlegung lassen sich zumindest zwei Schlussfolgerungen ziehen: Zum einen gibt es die begründete Hoffnung, dass ein Molekül mit der gewünschten Aktivität existiert, zum anderen stellt sich die Frage, wie diese unvorstellbar große Zahl chemischer Verbindungen systematisch durchmustert werden kann? Doch die Situation ist nicht so hoffnungslos, wie sie auf den ersten Blick erscheint. Dies zeigt die erfolgreiche Entwicklung immer neuer Medikamente. Das Forschungsgebiet der Chemieinformatik befasst sich mit der Entwicklung von intelligenten Lösungsansätzen, die Chemikern bei dieser Suche nach den "Nadeln im riesigen Heuhaufen" helfen können

    Fuzzy virtual ligands for virtual screening

    Get PDF
    A new method to bridge the gap between ligand and receptor-based methods in virtual screening (VS) is presented. We introduce a structure-derived virtual ligand (VL) model as an extension to a previously published pseudo-ligand technique [1]: LIQUID [2] fuzzy pharmacophore virtual screening is combined with grid-based protein binding site predictions of PocketPicker [3]. This approach might help reduce bias introduced by manual selection of binding site residues and introduces pocket shape information to the VL. It allows for a combination of several protein structure models into a single "fuzzy" VL representation, which can be used to scan screening compound collections for ligand structures with a similar potential pharmacophore. PocketPicker employs an elaborate grid-based scanning procedure to determine buried cavities and depressions on the protein's surface. Potential binding sites are represented by clusters of grid probes characterizing the shape and accessibility of a cavity. A rule-based system is then applied to project reverse pharmacophore types onto the grid probes of a selected pocket. The pocket pharmacophore types are assigned depending on the properties and geometry of the protein residues surrounding the pocket with regard to their relative position towards the grid probes. LIQUID is used to cluster representative pocket probes by their pharmacophore types describing a fuzzy VL model. The VL is encoded in a correlation vector, which can then be compared to a database of pre-calculated ligand models. A retrospective screening using the fuzzy VL and several protein structures was evaluated by ten fold cross-validation with ROC-AUC and BEDROC metrics, obtaining a significant enrichment of actives. Future work will be devoted to prospective screening using a novel protein target of Helicobacter pylori and compounds from commercial providers
    • …
    corecore